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A new instability for a splay-bend Ising wall was found in a 5CB nematic liquid crystal layer.
This instability, which occurs in the presence of an external horizontal magnetic � eld, is
driven by the elastic anisotropy of the liquid crystal material. Depending on the homogeneity
of the magnetic � eld, the unstable straight interface evolves towards a new steady state or
undergoes a spinodal decomposition into facets. Energy arguments are given in order to
explain these physical phenomena.

1. Introduction The � rst situation is encountered with polymer nematics
such as PBG (polybenzylglutamate, K

1
/K

2
~ 15), whichThe nematic liquid crystal phase is an anisotropic

phase of matter. In its lowest-energy state, the molecules are composed of very long molecules. This gives rise to
an inhomogeneous Fréedericksz transition [2], whichare, on average, oriented along a preferred direction

speci� ed by a vector n called the director. An elastic yields the emergence of a periodic modulated phase in
place of the homogeneous tilted one usually observed inenergy is associated with any deviation from this uniform

state, that is, with any spatial inhomogeneity of the the splay (planar) geometry of the Fréedericksz transition.
The transition to a modulated phase can also be seendirector orientation. As a consequence of the anisotropic

properties of liquid crystals, this elastic energy depends in the vicinity of the nematic–smectic A transition due
to the divergence of the twist and bend elastic constantson three diŒerent elastic constants, namely the splay K

1
,

the twist K
2

and the bend K
3

constants, which account [3]. Because the twist constant diverges more slowly
than the bend constant, the Fréedericksz instability infor three diŒerent kinds of director distortions [1].
the bend geometry favours a state which involves someGenerally, the elastic anisotropy of nematic liquid crystals
twist distortion in place of the bend distortion. Thisdoes not strongly aŒect the physical phenomena. For a
leads to the appearance of a periodic modulated state.qualitative understanding of experimental observations,

Besides, the elastic anisotropy, even small, changesone can use the one-constant approximation, which
the equilibrium con� guration of strongly distortedreads K

1
5 K

2
5 K

3
5 K. Such an approximation seems

regions of the nematic phase, namely defects like singularrather sensible in view of the actual values of the three
points or lines, umbilics and walls. For most of the usualelastic constants for most of the usual nematic com-
compounds, the twist constant is about half the splaypounds. Considering the elastic anisotropy becomes
and bend constants. As a consequence, twist distortionstherefore really useful when one is trying to � t the
are energetically favoured with respect to splay andexperimental data quantitatively.
bend deformations. This explains that a pure splayIn some cases nevertheless, the one-constant approxi-
( 1 1)-vortex is unstable towards a partially twisted onemation must be discarded since it does not allow a
[4]. Moreover, this results in a high energy barrier tocorrect description of the physical phenomena. This
be overcome during a twist–splay–twist transition of thehappens in two major situations: either the nematic com-
defect, and accounts for the step-like unwinding processpounds are strongly anisotropic, or strongly distorted
observed in smectic � lms during the relaxation of theregions are present in the nematic medium.
spiral pattern developed around a ( 1 1)-umbilic [5].
Both comments, on static con� guration and unwinding*Author for correspondence;

e-mail: fecheval@wisemail.weizmann.ac.il process, also apply to the singular defect located at the
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180 C. Chevallard et al.

centre of a nematic droplet (see [1], p. 187, for static the � rst section we present the experimental set-up used
for all experiments. In § 2 we describe the instability andcon� guration, and [6] for relaxation). The emission of
show how its nature depends on the homogeneity of thewaves from the core of a dynamic spiral [7] follows
magnetic � eld. Experimental data are presented in § 3.from the same last eŒect. In this experiment, the periodic
Finally a theoretical explanation of the zigzag instability,twist–splay–twist transformation of the umbilic is driven
based on the Frank free energy, is given in § 4.by a rotating horizontal magnetic � eld. Due to the

existing energy barrier, the phase of the defect is
locked for a while and then relaxes thanks to a p-wall.

2. Experimental set-upFurthermore, and because they involve diŒerent kind
In this paper, we shall consider the homogeneousof distortions, ( 1 1) and (Õ 1) umbilics have diŒerent

Fréedericksz transition that occurs in a homeotropicenergies, and therefore diŒerent sizes. As a consequence,
liquid crystal cell. All experiments have been realizeddynamical spirals developed around ( 1 1) and (Õ 1)
using the nematic 5CB compound. Both its dielectric

vortices diŒer in their pitch by up to 20% [8].
e
a

and diamagnetic x
a

anisotropies are positive. The
Singular lines and walls con� gurations are also aŒected

Fréedericksz transition is induced by applying a hori-
by the elastic anisotropy. Thus, one can demonstrate

zontal magnetic � eld to the sample. This results in a
that (Ô 1/2) wedge disclinations are unstable towards a

splay–bend deformation of the director in a vertical
twist disclination involving an escape of the director in

plane containing the magnetic � eld. Owing to the two-
the direction of the line (this leads to the zigzagging lines

fold degeneracy of the bifurcated state, domains of
observed [9]). Lastly, the measurement of the ellipticity

opposite (re-)orientation are created [19]. The interface
of looped walls [10] provides a good estimate of the

between two of these domains is called an Ising wall
elastic ratio K

2
/K (under the assumption K

1
5 K

3
5 K).

[20]. Starting from a straight splay–bend Ising wall, a
To conclude, one can remark that the instability

zigzag-like instability develops. We shall see that this
from straight to oblique rolls in a convective situation

instability arises because of the liquid crystal elastic
originates from the elastic anisotropy of the nematic

anisotropy.
material [11].

The 5CB compound is in the nematic phase at room
In this paper, we present the zigzag-like instability of

temperature. Its anisotropic physical properties are well
an Ising wall and show that it is driven by the elastic characterized by the following constants, at T 5 25 ß C:
anisotropy of the nematic compound used, namely the elastic constants [21] K

1
5 6.3, K

2
5 4.1, K

3
5 8.4

4-pentyl-4 ¾ -cyanobiphenyl (5CB). For such a material, (10 Õ 7 dynes); dielectric anisotropy [22] e
a

5 11.3; dia-
the elastic anisotropy is weak and therefore not su� cient magnetic anisotropy [23] x

a
5 1.142 (10 Õ 7 cm3 g Õ 1 );

to induce an inhomogeneous Fréedericksz transition. rotational viscosity c
1
~ 10 Õ 2 Pa s. The cells are made

However, the existence of strong distortions in the of two conductive ITO (indium tin oxide) glass plates
system, associated with the presence of an Ising wall, separated by thin mylar spacers which set the thick-
enhances the eŒect of the elastic anisotropy and possibly ness d of the cell. This thickness can be varied over the
results in the wall instability. A qualitatively similar range 50–150mm. The glass surfaces are treated with
instability, but in a diŒerent geometry, has already lecithin to provide a homeotropic anchoring (director
been reported by Cramer et al. [12]. Such a ‘zig-zag’ perpendicular to the glass plates). A vertical electric � eld
instability looks like the phase instability that distorts E 5 Ez (V

e f f .
~ 0–9 V) is applied. The use of a high

the structures of straight rolls in the Rayleigh–Bénard frequency (~5 kHz) a.c. electric � eld protects the system
convection [13] or in the electroconvection of aniso- from charge injection or electroconvection phenomena.
tropic � uids [14]. It can also be observed in crystal Two permanent magnets are used to produce a hori-
growth where it aŒects the front between the two com- zontal magnetic � eld H 5 Hx up to 0.7 T. The 5CB
peting thermodynamic phases [15, 16]. Lastly, a similar sample can be placed either in the inhomogeneous � eld
instability has been noticed to occur on the interface region or in the area between the two magnets where
separating two domains of opposite ‘chevron’ structures the magnetic � eld is uniform (see � gure 1). In the
in smectic liquid crystal � lms [17]. inhomogeneous region, the magnetic � eld is charac-

A dynamic approach for this ‘zigzag’ instability has terized by a linear variation of the vertical component
already been developed [18]. This last study provides a along the x-axis. More precisely, for all experiments that
quantitative description of the Ising wall instability near involved an inhomogeneous magnetic � eld, the gradient
the Fréedericksz transition, in the framework of bifurcation of vertical component is about 5.10 Õ 2 T mm Õ 1 (this will
theory. In the present paper, we shall emphasize the result in a variation of about 10 Õ 3 T of the vertical
experimental aspects and develop an explanation, based magnetic component over the wall thickness at the onset

of the zig-zag instability).on energy arguments, of the observed phenomena. In

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



181Ising wall instability in a NL C

threshold and can be modi� ed by change of the � eld
magnitudes. All experimental observations are made
through a polarizing microscope. Video � lms and
numerical images (see � gure 2) are recorded by a 3CCD
camera placed on the top of the microscope.

3. Instabilities of an Ising wall in a magnetic � eld
3.1. Instability in a magnetic trap

In the experiment described below, the sample of
liquid crystal is always kept in the inhomogeneous region
of the magnetic � eld. For some values of the electric and
magnetic � elds, that put the system beyond the threshold
of the Fréedericksz instability, a single splay–bend Ising

Figure 1. Experimental set-up. wall appears in the nematic cell. This wall forms at the
position of null magnetic � eld gradient (see � gure 1)
which acts as a restoring force around this particularFollowing our choice of the nematic compound and

cell geometry, the Fréedericksz transition is induced by position.
One then starts to decrease the amplitude of thethe horizontal magnetic � eld, whereas the vertical electric

� eld stabilizes the initial homeotropic state. A splay– stabilizing electric � eld in order to make the interface
thinner and thinner. This process enhances the elasticbend Ising wall [10] is formed by placing the cell in the

inhomogeneous magnetic � eld region (see � gure 1). Its distortions inside the wall. For large enough distortions
(and so, rather far from the Fréedericksz threshold ), thewidth is determined by the distance to the Fréedericksz

Figure 2. Experimental photographs
of the Ising wall instability: for
V > V

C 1
or V < V

C 2
, the straight

Ising wall is stable, see images
(a) and (d ); for V

C 1
> V > V

C 2
the

straight interface is unstable
versus a periodically shaped,
sinusoidal or faceted, interface,
see images (b) and (c).
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182 C. Chevallard et al.

straight wall becomes unstable. Its destabilization drives reappear on both sides of the wall, see for example
� gure 2 (c). This reveals the escape of the director fromthe system towards a new stable stationary state charac-

terized by a periodic shape of the interface (see � gure 2). the magnetic plane.
In order to determine the structure of the wall, weNear the instability threshold, the Ising wall shows a

sinusoidal pro� le, � gure 2 (b). If the voltage is further added to the optical path a waveplate turned by 45 ß
with respect to the polarizers axes (see � gure 4). Analysisdecreased, the interface reaches a periodic faceted shape,

� gure 2 (c). The straight wall is eventually restabilized of the birefringence colours shows that the escape of the
director inside the zig and zag regions occurs in oppositeby decreasing the voltage later, � gure 2 (d ). This last

observation indicates that the eŒective control parameter direction, in a way that tends everywhere to make the
director parallel to the interface. All these observationsof the instability is a non-linear function of the electric

� eld. In some cases however, it is not possible to observe lead to the determination of the new wall structure
beyond the instability threshold (� gure 5). As shown inthis restabilization because the wall undergoes a decom-

position into two singular lines (� gure 3) that nucleate � gure 5, the wall destabilization has two main features.
First, it corresponds to a local reorientation of the wall;at the edges of the sample.

The previous instability, undergone by the splay–bend second it brings the wall into a new structure in which
the splay distortion has been partially replaced by someIsing wall in the presence of an inhomogeneous magnetic

� eld, occurs without any visible hysteresis. Moreover, twist distortion. In this new steady state, the gain in
elastic energy, due to the local rotation of the wall andexperimental observations indicate that, in the new

stable state, the director escapes the magnetic plane (x, z) to the director reorientation, is balanced by the energy
cost associated with the interface elongation and thein the neighbourhood of the interface. That can actually

be deduced from observations using crossed polarizers, escape of the director from the magnetic plane.
These results point out the elastic anisotropy as theone of them being parallel to the magnetic � eld. When

it is straight, the splay–bend Ising wall looks dark key factor of the destabilization. Such a result is not
surprising if one remembers that the free energy per unitthrough the polarizing microscope, since the director

lies everywhere in the magnetic plane. Following the length of a pure twist wall is lower than the one of a
splay–bend wall for compounds similar to 5CB [10].destabilization of the straight interface, one can see light

Figure 3. Wall decomposition into
singular lines.

Figure 4. Use of a waveplate to
determine the new structure of
the wall beyond the instability
threshold.
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183Ising wall instability in a NL C

Figure 5. Structure of the wall beyond the zigzag instability:
the wall destabilization corresponds � rst to a local rotation
of the interface, second to a change of the inside structure
of the wall.

Besides, it is known that a wall, formed in a planar
geometry and turned by a non-zero angle with respect
to the external � eld, may reduce its energy by choosing
a con� guration in which the director escapes the vertical
plane de� ned by the external � eld [24].

3.2. Zigzag instability of an Ising wall in a homogeneous
magnetic � eld

We now present the experimental results concerning
the Ising wall instability in the presence of a homogeneous
magnetic � eld.

An Ising wall in the splay-bend con� guration is
formed in the region where the � eld is inhomogeneous
(see � gure 1) and then quenched into the area between
the two magnetics where the � eld is homogeneous. Near

Figure 6. Spinodaldecompositionof the wall in a homogeneous
the Fréedericksz threshold it is very di� cult to keep the magnetic � eld.
wall in an average position between the two magnets,
since any imperfection in the parallelism between the
sample and the plane of the magnetic � eld makes the wall
drift towards one edge of the cell. Therefore the experi- strong curvature that we shall call a ‘kink’ [18]. The

dynamics that follows the destabilization of the wall,ments have been carried out rather far from this
threshold. consists in gathering the domains of same orientation,

the angles of the ‘zig’ and ‘zag’ facets staying unchanged.As long as its width is larger than a critical size, the
splay–bend Ising wall is always unstable when it is This process occurs thanks to annihilations of kinks

and without any characteristic length scale. Indeed, thethrust into the homogeneous area of the magnetic � eld.
It � rst develops a spatial oscillation, and later loses its average size of the domains increases monotonically in

time (see � gure 6). The dynamics, which tends to separatesinusoidal shape towards a faceted line composed of
pieces of wall turned by an angle Ô Y

0
(see � gure 6). the zig and zag states, resembles the one-dimensional

counterpart of the spinodal decomposition dynamicsThis faceted wall looks like the faceted propagating front
observed in some crystal growth experiments [15, 16] observed in conservative binary mixtures [25]. The two

kinds of facets, characterized by their tilt with respectfor a strongly anisotropic crystal. Thus, in directional
solidi� cation, a zigzag instability (known as the Herring’s to the initial direction of the wall, are the analogues of

the two types of domains, characterized by diŒerentinstability by metallurgists) can occur if one forces the
growth of the crystal in a forbidden direction. However, concentrations, present in the phase separation pro-

cess of binary mixtures. In both cases, the spinodalone must note that, contrarily to the solidi� cation front,
the Ising wall does not propagate since it separates two decomposition involves coarsening dynamics, that is

interaction and annihilation of defects (kinks).energetically identical states.
Two adjacent pieces of the faceted wall, whose These experimental observations clearly highlight

the role of the magnetic gradient in the experimentsorientations are opposite, are connected by a region of
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184 C. Chevallard et al.

described previously in § 3.1: it stabilizes the straight In the above expression, we can ignore the � rst
term which is independent of the director orientation.splay–bend con� guration of the wall and, when this one

becomes eventually unstable, saturates the instability. The second term can be combined with the elastic
term, considering that x

a
H2 Õ e

a
E2 5 K/j2 far fromThe magnetic � eld gradient is therefore an antagonistic

eŒect to the elastic anisotropy that triggers the instability. the Fréedericksz threshold. j is the magneto-electric
coherence length and gives a scale for the Ising wall
thickness. The last term in equation (2) expresses the4. Theoretical development

4.1. Quantitative features for the destabilized wall energy cost resulting from the escape of the director
from the magnetic plane (x, z). This term produces aIt is relevant to determine the dimensionless control

parameters of the instability. This can easily be done, restoring force that tends to put the wall back into
the splay–bend con� guration. From the last term inwithout any calculation, by looking at the free energy

expression. The Frank free energy density of a nematic equation (2) one can de� ne another characteristic length
scale, namely the magnetic coherence length j

H
, whichsample subjected to some external magnetic and electric

� elds, reads [1, 4] satis� es x
a
H2 5 K/j2

H
. j

H
represents the typical size of

the region where the director escapes the magnetic plane.
Its precise de� nition is explained in � gure 8: j

H
is theF 5

1
2

{K [(Vn)2 1 (n Ö (V Ö n))2 ] 1 K
2
[n ¯ (V Ö n)]2

length of the distorted region in a semi-in� nite medium
whose bulk is uniformly oriented by a magnetic � eldÕ e

a
(n ¯ E )2 Õ x

a
(n ¯ H )2 }. (1 )

and whose boundary is anchored perpendicularly to
In equation (1) we have used the two-constants approxi- the magnetic � eld. Therefore, in our problem, its value
mation K

1
5 K

3
5 K Þ K

2
; n ; (sin h cos w, sin h sin w, follows the magnitude of the restoring force exerted by

cos h) is the director (see � gure 7). The stabilizing electric the magnetic � eld on the director. Figure 9 shows the
� eld E is directed along the normal z to the glass plates, meaning of the two characteristic length scales for the
E ; (0, 0, E), and the magnetic � eld H is parallel to the experimental situation under study.
x-axis, H ; (H, 0, 0). The elastic part in the free energy For the sake of simplicity we shall consider, in the
equation (1) depends on K and on the elastic anisotropy analysis below, a wall which is globally turned by an
dk 5 K

2
/K. angle Y with respect to the y-axis. Its position P along

The magnetic and electric terms in the free energy (1) this axis is expressed by P 5 y tan Y 1 cst (see � gure 7)
can be written as: where cst denotes an additive constant that takes into

account the translational invariance of the system along
F

m a g
1 F

é l e c .
5 Õ

1
2

x
a
H2 1

1
2

[x
a
H2 Õ e

a
E2 ] cos2 h the x-axis. We assume that the director angles h and

w do not depend on the distance z from the plates
(bidimensional analysis).

1
1
2

x
a
H2 sin2 h sin2 w. (2 )

From the two characteristic length scales, j and j
H

,
one can construct the dimensionless order parameter
j/j

H
. Besides, if one considers that the two angles h

and w are of the general form h 5 H(x Õ P ( y)/j) and
w 5 W (x Õ P ( y)/j), then the free energy per unit length
along the y-axis, of a wall turned by an angle Y, reads:

f (Y ) 5
K
j CA(Y, dk) 1 B (Y, dk)

j2

j2
H
D .

A and B are two functions of the dimensionless control
parameters dk 5 K

2
/K and j/j

H
. Minimizing this energy

with respect to Y leads to the two symmetrical states
Ô Y

0
corresponding to the ‘zig’ and ‘zag’ facets. Y

0
depends on the two dimensionless parameters dk and
j/j

H
. This result allows expression of the experimental

data in term of the relevant parameters of the problem.
The amplitude A and wavelength l of the periodic

steady shape versus the applied voltage have been plotted
in � gure 10. Here the cell thickness is d 5 157mm and

Figure 7. De� nition of the director coordinates h and w. the sample is submitted to an inhomogeneous magnetic
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185Ising wall instability in a NL C

Figure 8. De� nition of the magnetic
coherence length: this length
scale corresponds to the size
of the reorientation domain in
a semi-in� nite medium whose
bulk is uniformly oriented by
a magnetic � eld and whose
boundary anchoring direction
is perpendicular to this � eld.

voltages. At intermediate voltages, the interface shape is
no longer sinusoidal but rather faceted. If one further
decreases the voltage, the amplitude, after reaching a
maximum, starts to decrease and goes eventually to
zero. Thus, the instability occurs over a � nite range of
voltages, whose width is about 2 V. Besides, the wave-
length is almost constant over this range. This means
that the wavelength does not depend on the electric � eld
but only on the magnetic � eld. Since the gradient of
vertical magnetic component over the sample is similar

Figure 9. Meaning of the two characteristic length scales for all values of the horizontal magnetic � eld, the change
of the problem: the electro-magnetic coherence length j in the wavelength value must be attributed to the change
gives the size of the wall along the x-direction; whereas

in the horizontal magnetic � eld component. In � gure 11
the magnetic coherence length j

H
gives the w-variation

both the amplitude and the wavelength have been plotteddistance from the centre of the wall along the y-axis.
versus the dimensionless parameter j/j

H
. A range of

instability that is common to all values of magnetic � eld
emerges from this scaling: j/j

H
is indeed a control

parameter for the instability.
In order to check the two-dimensional approximation

(h and w independent on z), we have plotted in � gure 12
the dimensionless quantity l/j

H
versus j/j

H
for diŒerent

cell thicknesses. Under such a scaling, the dimensionless
wavelength gets a single value for all experiments. This
value probably depends on the elastic anisotropy; that
has not been changed in our experiments, but does not
apparently depend on the cell thickness, as expected.
Thus, the chosen two-dimensional analysis seems quite
accurate to describe the system. This can be con� rmed
by comparing the electro-magnetic coherence length j
with the cell thickness d. In our experiment j/d# 1/10% 1.
One can then consider that the director far from the

Figure 10. Experimental curves characterizing the destabilized Ising wall is completely aligned with the magnetic � eld
wall for a sample whose thickness is d 5 157mm and for and that a good description of the system can ignore
diŒerent values of the magnetic � eld H. Apparently the

the z-dependence of the director orientation angles hspatial period of the wall depends only on the magnetic
and w.� eld. On the contrary the amplitude strongly depends on

the electric voltage but nearly not on the magnetic � eld. In the case of the spinodal decomposition, that is
in the presence of a homogeneous magnetic � eld, the
unstable state can be characterized by the slope P

y
of� eld. DiŒerent curves corresponding to diŒerent ampli-

the facets. By plotting this quantity versus j/j
H

, onetudes of the horizontal magnetic � eld are represented.
obtains the curve shown in � gure 13. Two sets of experi-For a given magnetic � eld, the amplitude of the spatial
mental data, corresponding to two diŒerent samples, lieoscillation is zero at the instability threshold (high voltage

region) and then begins to increase for decreasing applied on the same straight line. This ‘universal’ curve depends
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186 C. Chevallard et al.

Figure 11. Same curves as those
presented on � gure 10 but versus
the dimensionlessquantity j/j

H
values. The wavelength does
not depend on this parameter
but strongly changes with the
magnetic � eld magnitude.

Figure 12. Wavelength, rescaled
by the magnetic coherence
length, versus the dimensionless
parameter j/j

H
.

on the elastic anisotropy. The lack of data at lower 4.2. Energy analysis
In the homogeneous magnetic � eld, the wall instabilityvalues of j/j

H
is due to some experimental di� culties.

As already mentioned in § 3, the wall undergoes a leads to the emergence of two symmetrical states
which are the zig and zag facets. The zig and zag facetsdecomposition into singular lines for small values of its

thickness, i.e. for small values of j/j
H

. This process are the two new minima of the free energy. We have
made an energy calculation, with rather strong simplify-initiates at the edges of the sample and then propagates

along the wall, making the measurements very di� cult. ing assumptions, to demonstrate the existence of these
minima.However, if one decreases the voltage fast enough, it can

be seen, in the part of the wall not aŒected by this In view of this calculation, one must choose an ansatz
that depicts the structure of the wall turned by an anglephenomenon, that the tilt angle of the facets further

decreases and eventually cancels out for a critical value Y. We � rst assume that the director angles h and w do
not depend on the z-coordinate (bidimensional analysis).of the dimensionless parameter j/j

H
. Therefore, the

instability no longer occurs for small values of j/j
H

, as This assumption seems reasonable, as discussed in the
experimental section. Moreover, we assume that theactually suggested by an extrapolation of the curve in

� gure 14 at lower values of the control parameter. Then escape of the director from the plane (x, z) is weak (w% 1
in � gure 7) and that it happens over the same domainthe elastic gain coming from the change in the wall

structure is no longer su� cient to induce the rotation as the h-variations across the wall (see � gure 14). The
h-dependence is chosen of a hyperbolic form, which isof the interface.
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requirements and allows analytic calculations:

h(x, y, t) 5 Õ
p

2
tanhC k(x 1 y tan Y )

(1 1 a2 tan2 Y )1 /2D
w(x, y, t) 5 Õ

pp

4
sin (2Y ) sech2 C k(x 1 y tan Y )

(1 1 a2 tan2 Y )1 /2D
(3)

where a 5 (K
2
/K

1
)1 /2 and p% 1 quanti� es the escape of

the director from the magnetic plane. The free energy
of the system, linearized with respect to w, reads:

F 5
1
2

[Kh2
y

1 K
2
h2
x

1 2(K Õ K
2
)h

x
h
y
w

1 2(Kh
y
w

x
Õ K

2
h
x
w

y
) sin h cos h

Õ x
a
H2 sin2 h Õ e

a
E2 cos2 h] (4)

where one has used the two-constants approximation
(K

1
5 K

3
5 K Þ K

2
). The free energy per unit length of

the wall along the y-axis is obtained by integrating the
preceding equation over x:

Figure 13. Characteristic of the unstable state for an Ising
wall in a homogeneous magnetic � eld. f (Y ) 5 (1 1 a2 tan2 Y )1 /2 Cp2

6
kK 1

b

k
(x

a
H2 Õ e

a
E2 )D

Õ
(45 Õ 2p4 )

15p
kK(1 Õ a2 )

p sin2 Y

(1 1 a2 tan2 Y )1 /2
(5)

an exact description of the wall distortions near the
Fréedericksz threshold. In the above saturated situation,

where b 5 0.609.a more realistic description would involve elliptic integrals
Considering that k2 ~ [1/j2 5 x

a
H2 Õ e

a
E2 /K] for abut would complicate the analysis without giving any

strongly con� ned wall, one gets:additional information. The w-dependence is represented
by an even function of x. Moreover w must be zero for f (Y )

kK
5 A(1 1 a2 tan2 Y )1 /2 Õ B (1 Õ a2 )

p sin2 Y

(1 1 a2 tan2 Y )1 /2
the two limit cases Y 5 0 (splay–bend wall ) and Y 5 p/2
(twist wall) and maximum in the intermediate case
Y 5 p/4. The expression given below ful� ls the preceding with A~ 2.25, B~ 3.18. (6)

Figure 14. De� nitions of h and w
for an Ising wall turned of
an angle Y. h has been chosen
with a hyperbolic form. The
variation distances of h and w
are assumed to be the same.
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188 C. Chevallard et al.

The � rst term in equation (6) expresses the energy cost e
a

5 11.3, H 5 0.7 T, V
P e a k - t o -P e a k

5 22 V and d 5 100mm.
With these values the width of the wall is 1/k 5 j~ 4 mm.of the wall elongation due to its rotation. The second

term accounts for the escape of the director from the The curves obtained indicate that there exists a critical
value of the elastic anisotropy that yields the emergence(x, z) plane close to the interface. This escape introduces

favourable elastic distortions inside the wall and con- of two new minima, at Y 5 Ô Y
0
. This critical aniso-

tropy, which de� nes the onset of the instability, issequently decreases the free energy of the wall.
The linearization of the free energy with respect to w higher than the one deduced from the experiments.

This discrepancy probably follows from the simplifyingleads to the suppression of the term x
a
H2 w2 sin h2 . This

term represents the restoring force towards the vertical assumptions used in the energy model, which shift the
threshold of the instability. The model still provides anmagnetic plane exerted by the magnetic � eld. It is a

positive energy term that disfavours the rotation of the explanation for the destabilization of the wall in terms
of energy. For a su� ciently high value of the elasticwall. This term apparently corresponds to a second

order eŒect in the destabilization and probably plays a anisotropy, the straight splay–bend Ising wall is unstable
towards a tilted wall. Due to the translational invariancerole in the saturation of the instability.

For all values of the anisotropy a, the even function of the system along the y-axis (in� nite medium), the
destabilization leads to the simultaneous appearance off (Y ) meets f (0) 5 0 and limY� Ô p/ 2

f (Y ) 5 2 . For a 5 1
(isotropic case), the function f (Y ) is obviously a mono- two new minima. This explains the formation of the

zigzag interface. The conclusions drawn from thistonically decreasing function of Y. For a < 1, the sign
of its second derivative determines the stability of the analysis are strengthened by direct minimization of the

two-dimensional free energy using a numerical schemestraight wall. Actually, for f ² (0) > 0, the splay–bend
con� guration is stable, whereas for f ² (0) < 0, this con- (see � gure 16). The coarsening dynamics that follows

tends to separate the facets by suppressing the regions� guration becomes unstable; new minima at Y Þ 0
necessarily emerge in order to satisfy the divergence of high curvature of the interface which are energetically

costly.condition of the function f (Y ) at in� nity. After a
straightforward calculation, this derivative reads f ² (0) 5
Aa2 Õ 2B (1 Õ a2 )p. For a < 1, and under the assumption 5. Conclusion

The existence of a new instability for a splay–bendthat p is small, one can have f ² (0) < 0 for a strong
enough anisotropy. Then, Y 5 0 corresponds to a maxi- Ising wall in a 5CB nematic liquid crystal has been

emphasized. The origin of this instability lies in the elasticmum of the free energy whereas at least two new minima
appear in the interval ] Õ p/2; p/2[. In � gure 15, we have anisotropy of the nematic compound used (K

2
< K

1
, K

3
).

Such a result is explained using a theoretical approachplotted the curve f (Y ) for Y ranging from Õ p/2 to p/2,
and for two diŒerent values of the elastic anisotropy. based on the nematic free energy. More precisely, the

instability induces a change in the splay–bend wallThe p value has been arbitrarily set at 0.02. The following
values for the physical constants and control parameters structure allowing the appearance of some twist distortion.

In a magnetic trap, the unstable Ising wall then reacheshave been used: K 5 7.4 10 Õ 1 2 N (which is the average
of the splay and bend constants given in § 2), x

a
5 1.142, a steady periodic pro� le. In a diŒerent way, when the

Figure 15. Free energy curves
for a maximum out-of-plane
quanti� ed by p 5 0.02 and for
two diŒerent values of the
elastic anisotropy a. For a
strong enough anisotropy, the
splay–bend Ising wall becomes
unstable; two new minima
appear at Ô Y

0
in place of the

previous minimum at Y 5 0.
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1935; Cramer, Ch., Kühnau, U., Schmiedel, H.,
Stannarius, R., 1994, Mol. Cryst. liq. Cryst., 257, 99.

[13] Manneville, P., and Piquemal, J.-M., 1983, Phys.
Rev. A, 28, 1774; Cross, M. C., and Hohenberg, P. C.,
1993, Rev. Mod. Phys., 65, 859.Figure 16. Numerical result obtained from a minimization

[14] Ribotta, R., Joets, A., and Lei, L., 1986, Phys. Rev. L ett.,of the free energy; the numerical scheme assumes that
56, 1595; Bodenschatz, E., Kaiser, M., Kramer, L.,the problem is two-dimensional which means that h
Pesch, W., Weber, A., and Zimmermann, W., 1990, Newand w do not depend on z. Numerical parameters: K

1
5

T rends in Nonlinear Dynamics and Pattern-FormingK
3

5 7.10Õ 1 2 N, K
2

5 3.10Õ 1 2 N, e
a

5 11.3, x
a

5 1.142
Phenomena, edited by P. Coullet and P. Huerre (New(10 Õ 7 cm3 g Õ 1 ), H 5 0.8 T, V

P to P
5 32.7 V.

York: Plenum Press).
[15] Golovin, A. A., Davis, S. H., and Nepomnyashchy,

A. A., 1998, Physica D, 122, 202.magnetic � eld is homogeneous, the interface undergoes
[16] Melo, F., and Oswald, P., 1991, Ann. Chim. Fr., 16, 236.a spinodal decomposition into facets. In both cases, the
[17] Limat, L., 1998, Europhys. L ett., 44, 205.

unstable state has been experimentally characterized. [18] Chevallard, C., Clerc, M., Coullet, P., and
Gilli, J.-M., 2000, Eur. Phys. J. E, 1, 179;

We would like to thank Lionel Gil who has developed Chevallard, C., Clerc, M., Coullet, P., and
Gilli, J.-M., Phys. Rev. L ett. (submitted).the numerical scheme for the minimization of the free

[19] Helfrich, W., 1968, Phys. Rev. L ett., 21, 1518.energy.
[20] Gilli, J.-M., Morabito, M., and Frisch, T., 1994,

J. Phys. II Fr., 4, 319.
References [21] Bradshaw, M. J., Raynes, E. P., Bunning, J. D., and

[1] De Gennes, P. G., and Prost, J., 1993, T he Physics of Faber, T. E., 1985, J. Phys. (Paris), 46, 1513;
L iquid Crystals (Oxford: Clarendon Press). Coles, H. J., and Sefton, M. S., 1985, Mol. Cryst. liq.

[2] Lonberg, F., and Meyer, R. B., 1985, Phys. Rev. L ett., Cryst., 1, 151.
55, 718; Srajer, G., Lonberg, F., and Meyer, R. B., [22] Ratna, B. R., and Shashidhar, R., 1977, Mol. Cryst.
1991, Phys. Rev. L ett., 67, 1102; Miraldi, E., Oldano, C., liq. Cryst., 42, 113.
and Strigazzi, A., 1986, Phys. Rev. A, 34, 4348; [23] Sherrell, P. L., and Crellin, D. A., 1979, J. Phys.
Barbero, G., Miraldi, E., and Oldano, C., 1988, Phys. Colloq., C3, 40.
Rev. A, 38, 519; Kini, U. D., 1986, J. Physique, 47, 693. [24] Figueiredo Neto, A. M., Martinot-Lagarde, Ph., and

[3] Cladis, P. E., and Torza, S., 1975, J. appl. Phys., 46, 584. Durand, G., 1984, J. Phys. L ett., 45, 793.
[4] Chandrasekhar, S., 1992, L iquid Crystals (Cambridge: [25] Cahn, J. W., and Hilliard, J. E., 1958, J. chem. Phys.,

University Press), cover page. 28, 258.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


